The selling cost of 1 packet of w c = $ 10
The selling cost of 1 packet of g b = $ 17
Explanation:
Let us assume the cost of 1 packet of w c = $ m
and the cost of 1 packet of g b = $ n
The cost of 13 packages of w c + 1 package of g b = $ 147
⇒ 13 x ( cost of 1 package of w c ) + 1 package of g b = $ 147
⇒ 13 x (m) + 1 x (n) = 147
⇒13 m + n = 147 ..... (1)
The cost of 8 packages of w c + 10 package of g b = $ 250
⇒ 8 x ( cost of 1 package of w c ) + 10 x (cost of 1 package of g b ) = $ 250
⇒8 x (m) + 10 x (n) = 250
⇒ 8 m + 10 n = 250 ..... (2)
Now, solving for the values of m and n:
13 m + n = 147 ⇒ n = 147 - 13 m
Putting this in 8 m + 10 n = 250 , we get:
8 m + 10 ( 147 - 13 m) = 250
or, 8 m + 1470 - 130 m = 250
or, -122 m = -1220
or, m =
= 10
⇒ m = $10
⇒ n = 147 - 13 (10) = 147 - 130 = 17 ⇒ n = $17
Hence, the cost of 1 packet of w c = $ 10
and the cost of 1 packet of g b = $ 17