Answer:
The comet might intersect the orbiting planet at (0, -4),
.
Explanation:
Given that, a planet follows an elliptical path described by
.........(1)
A comet follows the parabolic path
.........(2)
To find the intersecting point, we need to solve the above equations.
Putting
in the equation (1)
![y+4+4y^2=64](https://img.qammunity.org/2021/formulas/mathematics/high-school/sziykeq3pe7myrgqkevfdai5yr0n58ywh2.png)
![\Rightarrow 4y^2+y+4-64=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/cys87dbjkux3qbjvkw3vqed71h3ie83s23.png)
![\Rightarrow 4y^2+y-60=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/p21twfivqf1ti5bl2ws8nl52cu8c459zzd.png)
![\Rightarrow 4y^2+16y-15y-60=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/24y58w9acuf94zpq9uiws1abvadouiax7p.png)
![\Rightarrow 4y(y+4)-15(y+4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/vuinrx0bju8lh4mig6zmuzeb4oxecx6xvw.png)
![\Rightarrow(y+4)(4y-15)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/yccmoce011y6h4vgflhq8yr2rg2xosxsvo.png)
![\Rightarrow y=-4, (15)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hf1bzg6qqd09x5g7bd7180vi0wg3w68ybc.png)
When y = -4 , then
![\Rightarrow x=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/i64e7e7nvhbnszfqdkrtdiby7djsi2d6ys.png)
When
, then
![\Rightarrow x=\pm (√(31))/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o4dfslsc8d2cbqz8wfc7gtv56vlsqj6sze.png)
The comet might intersect the orbiting planet at (0, -4),
.