Answer:
Required,
![L=(3+√(37))/(2)-(144)/(x-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/otgm2msufpabu4xydu8s3ot00fq3dj9ds9.png)
![W=(3-√(37))/(2)-(144)/(x-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/brvvux76cjyn6733kmi5zrc47zxclw35ic.png)
Explanation:
Given volume and depth respectively,
and
![x-3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/aw8lb96iy894w8omdg73qojgm36nm6lfct.png)
To find length and width of the rectanglular swiming pool we know,
Volume=length
height
depth.
Let depth=D=x-3, length=L, width=W, then
![V=DLW](https://img.qammunity.org/2021/formulas/mathematics/high-school/y4hqfwmr48iif6qq5c5q1uac7c4imfydfi.png)
![x^3+13x-210= LW(x-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/slkm7nocvfd7m21n3w4raqg47bxicporxk.png)
![LW=(x^3+13x-210)/(x-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kg4xvb3rxn18mdb4sax5t5o1dg3hmbirdx.png)
After divide we will get
with remainder -144.
Thus,
![x^3+13x-210=(x^2-3x-22)(x-3)-144=(x-3)LW](https://img.qammunity.org/2021/formulas/mathematics/high-school/gn2v1iqket8kmji3raemrrpmkrt96aur2f.png)
Now to find root of,
![x^2-3x-144=(3\pm√(9+88))/(2)=(3\pm √(37))/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qyt6z2z99d07pkr872zex0r72r4oz4gy43.png)
Thus,
![L=(3+√(37))/(2)-(144)/(x-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/otgm2msufpabu4xydu8s3ot00fq3dj9ds9.png)
![W=(3-√(37))/(2)-(144)/(x-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/brvvux76cjyn6733kmi5zrc47zxclw35ic.png)