Answer:
The initial angular acceleration of the beam is
![{\bf{1}}{\bf{.3056}}\,\frac{{{\bf{rad}}}}{{{{\bf{s}}^{\bf{2}}}}}](https://img.qammunity.org/2021/formulas/physics/college/xibngaui14d8jc132z7mfilvpyjwqysdsq.png)
The magnitude of the force at A is 832.56N
Step-by-step explanation:
Here, m is the mass of the beam and l is the length of the beam.
![I =(1)/(3) ml](https://img.qammunity.org/2021/formulas/physics/college/gx3sgwnu0jqy0flpxmwilug2bre8oaxim4.png)
![I=(1)/(3) *110*4^2\\I=586.67kgm^2](https://img.qammunity.org/2021/formulas/physics/college/2cq2ezrej2ajhltrtjaqvnq69civwetr1z.png)
Take the moment about point A by applying moment equilibrium equation.
![\sum M_A =I \alpha](https://img.qammunity.org/2021/formulas/physics/college/1kqkj9etmxym6lehafu4k637us6d9w9wo5.png)
![P \sin45^0 * 3 =I \alpha](https://img.qammunity.org/2021/formulas/physics/college/fl5ay0ar40j2id8ymmgnt0r6ytdulg3jr3.png)
Here, P is the force applied to the attached cable and
is the angular acceleration.
Substitute 350 for P and 586.67kg.m² for I
![350 \sin 45^0 *3=568.67 \alpha](https://img.qammunity.org/2021/formulas/physics/college/9bhaae0yq6frrnm1hv62y621m8pa4zpjxb.png)
![\alpha =1.3056rad/s^2](https://img.qammunity.org/2021/formulas/physics/college/o6235tq71dlfztzybs96vga8rkh5ff6qmt.png)
The initial angular acceleration of the beam is
![{\bf{1}}{\bf{.3056}}\,\frac{{{\bf{rad}}}}{{{{\bf{s}}^{\bf{2}}}}}](https://img.qammunity.org/2021/formulas/physics/college/xibngaui14d8jc132z7mfilvpyjwqysdsq.png)
Find the acceleration along x direction
![a_x = r \alpha](https://img.qammunity.org/2021/formulas/physics/college/6hhsmh1shtsh9epzb8bjmcmqu3mcqdqshn.png)
Here, r is the distance from center of mass of the beam to the pin joint A.
Substitute 2 m for r and 1.3056rad/s² for
![\alpha](https://img.qammunity.org/2021/formulas/physics/high-school/hnta6o297p6x6k4chhffnl4rkouajc67r4.png)
![a_x = 2* 1.3056 = 2.6112m/s^2](https://img.qammunity.org/2021/formulas/physics/college/71idv6kormkfue5evipf71t82662zlr6sn.png)
Find the acceleration along the y direction.
![a_y = r \omega ^2](https://img.qammunity.org/2021/formulas/physics/college/oswz4he1xe2484qlqsepaje3gwxqm8mfrd.png)
Here, ω is angular velocity.
Since beam is initially at rest,ω=0
Substitute 0 for ω
![a_y = 0](https://img.qammunity.org/2021/formulas/physics/college/vs02ckq3a5e8hxw90l0k2plrjfjvf5vy5s.png)
Apply force equilibrium equation along the horizontal direction.
![\sum F_x =ma_x\\A_H+P \sin45^0=ma_x](https://img.qammunity.org/2021/formulas/physics/college/evua7cp236m4e0n4yxnkf1e8ff3km8lzz0.png)
![A_H + 350 \sin45^0=110*2.6112\\\\A_H=39.75N](https://img.qammunity.org/2021/formulas/physics/college/nqepqs4lppob8dn1hqsjawtc0oyu69n81z.png)
Apply force equilibrium equation along the vertical direction.
![\sum F_y =ma_y\\A_V-P \cos45^0-mg=ma_y](https://img.qammunity.org/2021/formulas/physics/college/cx2l6cagouefrwbwcq9mucwf9ib87dnrye.png)
![A_v +350 \cos45^0-110*9.81=0\\A_V = 831.61\\](https://img.qammunity.org/2021/formulas/physics/college/i2egy5p8e4xcdapblwbatw8reee5vcyuf1.png)
Calculate the resultant force,
![F_A=√(A_H^2+A_V^2) \\\\F_A=√(39.75^2+691.61^2) \\\\= 832.56N](https://img.qammunity.org/2021/formulas/physics/college/q7clfo73tuipbkyjpau0z7k7flil3h8rpx.png)
The magnitude of the force at A is 832.56N