19.6k views
1 vote
By what percent will the fraction change if its numerator is

increased by 25% and its denominator is increased by 20%?

1 Answer

6 votes

Answer:

The fraction increase by (
0.047=4.7\:\% ) if its numerator is

increased by 25% and its denominator is increased by 20%.

Explanation:

  • Let 'n' be the numerator
  • Let 'd' be the denominator

As


100\%\mathrm{\:in\:fractions}=\:1


25\%\mathrm{\:in\:fractions}=\:(1)/(4)


20\%\mathrm{\:in\:fractions}=(1)/(5)

so

Increase in 25% means


100\%\:+25\%\:=(5)/(4)

Increase in 20% means


100\%\:+20\%\:=(6)/(5)

Thus the fraction becomes


\:((5)/(4)* \:n)/((6)/(5)* \:d)


=((5)/(4)n)/((6d)/(5))


\mathrm{Divide\:fractions}:\quad ((a)/(b))/((c)/(d))=(a* \:d)/(b* \:c)


=(5n* \:5)/(4* \:6d)


=(25n)/(24d)


=1.0417\left((n)/(d)\right)


=1\left((n)/(d)\right)+0.047\left((n)/(d)\right)

As


0.047=4.7\:\%

Therefore, the fraction increase by (
0.047=4.7\:\% ) if its numerator is

increased by 25% and its denominator is increased by 20%.

User Cameron Askew
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories