Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Step-by-step explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:
![B_1=\mu_0\, (N_1)/(L_1) I_1](https://img.qammunity.org/2021/formulas/physics/college/fs8nb9yj4gvdd97fquuutp6xj1gbtjk2c6.png)
notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then
![L_2=L_1/2](https://img.qammunity.org/2021/formulas/physics/college/5ryt69ntktep4ugkew9nrgvfwec8wchpeu.png)
2) twice as many turns as solenoid 1. Then
![N_2=2\,N_1](https://img.qammunity.org/2021/formulas/physics/college/ikowqhk8oin0qlh8utixe9gtwmkey1tl6u.png)
3) three times the current of solenoid 1. Then
![I_2=3\,I_1](https://img.qammunity.org/2021/formulas/physics/college/51itbaqlqn9wjguswoqtz2sr8ultz6mwnb.png)
we obtain:
![B_2=\mu_0\, (N_2)/(L_2) I_2\\B_2=\mu_0\, (2\,N_1)/(L_1/2) 3\,I_1\\B_2=\mu_0\, 12\,(N_1)/(L_1) I_1\\B_2=12\,B_1](https://img.qammunity.org/2021/formulas/physics/college/iqit7d9qkhst3z2bs9hldxf14160cuptku.png)