Answer:
a)
P(0) = 547/14860 = 0.0368
P(1) = 5012/14860 = 0.3373
P(2) = 6100/14860 = 0.4105
P(3) = 2644/14860 = 0.1779
P(4) = 557/14860 = 0.0375
b) Expected Value = 1.842
Variance = 0.7874
c)
P(0) = 23 / 16869 = 0.0001
P(1) = 541 / 16869 = 0.0321
P(2) = 3832 / 16869 = 0.2272
P(3) = 8690 / 16869 = 0.5151
P(4) = 3783 / 16869 = 0.2243
d) Expected Value = 2.929
Variance = 0.5763
e) Owner-occupied houses have more bedrooms in general than renter-occupied houses.
Explanation:
Incomplete Question.
See the complete question: a. Define a random variable x number of bedrooms in renter-occupied houses and develop a probability distribution for the random variable. (Let x 4 represent 4 or more bedrooms.) b. Compute the expected value and variance for the number of bedrooms in renteroccupied houses. c. Define a random variable y number of bedrooms in owner-occupied houses and develop a probability distribution for the random variable. (Let y 4 represent 4 or more bedrooms.) d. Compute the expected value and variance for the number of bedrooms in owneroccupied houses. e. What observations can you make from a comparison of the number of bedrooms in renter-occupied versus owner-occupied homes?
Bedrooms Number ofRenter-Occupied Houses Owner-Occupied (1000)
0 547 23
1 5012 541
2 6100 3832
3 2644 8690
4 or more 557 3783
a) Total number of rental
= 547 + 5012 + 6100 + 2644 + 557 = 14860
P(0) = 547/14860 = 0.0368
P(1) = 5012/14860 = 0.3373
P(2) = 6100/14860 = 0.4105
P(3) = 2644/14860 = 0.1779
P(4) = 557/14860 = 0.0375
b) The expected value:

The variance:

c) Probabilities for renter-occupied
total number of rental-occupied
= 23 + 541 + 3832 + 8690 + 3783 = 16869
P(0) = 23 / 16869 = 0.0001
P(1) = 541 / 16869 = 0.0321
P(2) = 3832 / 16869 = 0.2272
P(3) = 8690 / 16869 = 0.5151
P(4) = 3783 / 16869 = 0.2243
d) The Expected value:

The Variance is:
