74.5k views
5 votes
I need help with this problem x^2=7x+17 step by step using the “completing the square” method

User TimHorton
by
8.4k points

2 Answers

3 votes


x^2=7x+17\\x^2-7x-17=0\\D=(-7)^2-4*(-17)=117\\\\x_1=(7+√(117) )/(2) =(7+3√(13) )/(2) \\x_2=(7-√(117) )/(2) =(7-3√(13) )/(2)


Answer: \\x_1=(7+3√(13) )/(2) \\\\x_2=(7-3√(13) )/(2)

P.S. Hello from Russia

User RotaJota
by
9.1k points
5 votes

Answer:

x =
(7-3√(13))/(2) x=
(7-3√(13))/(2)

Explanation:

Step 1: Subtract 7x on both sides


x^(2) = 7x + 17

Step 2: Subtract 17 on both sides


x^(2) - 7x = 17\\x^(2) -7x - 17 = 0

Solve with the quadratic formula:


\quad x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=1,\:b=-7,\:c=-17:\quad x_(1,\:2)=(-\left(-7\right)\pm √(\left(-7\right)^2-4\cdot \:1\left(-17\right)))/(2\cdot \:1)


(-\left(-7\right)+√(\left(-7\right)^2-4\cdot \:1\cdot \left(-17\right)))/(2\cdot \:1)

=
(7+√(117))/(2\cdot \:1)

=
(7+√(117))/(2)

=
(7+3√(13))/(2)


(-\left(-7\right)-√(\left(-7\right)^2-4\cdot \:1\cdot \left(-17\right)))/(2\cdot \:1)

=
(7-√(117))/(2\cdot \:1)

=
(7-√(117))/(2)

=
(7-3√(13))/(2)

x =
(7-3√(13))/(2) x=
(7-3√(13))/(2)

User Igor Zilberman
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories