74.5k views
5 votes
I need help with this problem x^2=7x+17 step by step using the “completing the square” method

User TimHorton
by
4.4k points

2 Answers

3 votes


x^2=7x+17\\x^2-7x-17=0\\D=(-7)^2-4*(-17)=117\\\\x_1=(7+√(117) )/(2) =(7+3√(13) )/(2) \\x_2=(7-√(117) )/(2) =(7-3√(13) )/(2)


Answer: \\x_1=(7+3√(13) )/(2) \\\\x_2=(7-3√(13) )/(2)

P.S. Hello from Russia

User RotaJota
by
5.0k points
5 votes

Answer:

x =
(7-3√(13))/(2) x=
(7-3√(13))/(2)

Explanation:

Step 1: Subtract 7x on both sides


x^(2) = 7x + 17

Step 2: Subtract 17 on both sides


x^(2) - 7x = 17\\x^(2) -7x - 17 = 0

Solve with the quadratic formula:


\quad x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=1,\:b=-7,\:c=-17:\quad x_(1,\:2)=(-\left(-7\right)\pm √(\left(-7\right)^2-4\cdot \:1\left(-17\right)))/(2\cdot \:1)


(-\left(-7\right)+√(\left(-7\right)^2-4\cdot \:1\cdot \left(-17\right)))/(2\cdot \:1)

=
(7+√(117))/(2\cdot \:1)

=
(7+√(117))/(2)

=
(7+3√(13))/(2)


(-\left(-7\right)-√(\left(-7\right)^2-4\cdot \:1\cdot \left(-17\right)))/(2\cdot \:1)

=
(7-√(117))/(2\cdot \:1)

=
(7-√(117))/(2)

=
(7-3√(13))/(2)

x =
(7-3√(13))/(2) x=
(7-3√(13))/(2)

User Igor Zilberman
by
4.9k points