202k views
7 votes
Write an equation in standard form of the hyperbola described.

Vertex (10, 0); focus (-26, 0); center (0,0)

User Vpelletier
by
8.6k points

1 Answer

9 votes

Check the picture below, so the hyperbola looks more or less like the one below, let's find the conjugate axis or namely the "b" component.


\textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad √( a ^2 + b ^2) \end{cases} \\\\[-0.35em] ~\dotfill


\begin{cases} h=0\\ k=0\\ a=10\\ c=26 \end{cases}\implies \cfrac{(x-0)^2}{10^2}-\cfrac{(y-0)^2}{b^2} \\\\\\ c^2=a^2+b^2\implies 26^2=10^2+b^2\implies 676=100+b^2\implies \underline{576=b^2} \\\\\\ \cfrac{(x-0)^2}{10^2}-\cfrac{(y-0)^2}{576}\implies \boxed{\cfrac{x^2}{100}-\cfrac{y^2}{576}}

Write an equation in standard form of the hyperbola described. Vertex (10, 0); focus-example-1
User Zory
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories