Answer:
a) the velocity of the implant immediately after impact is 20 m/s
b) the average resistance of the implant is 40000 N
Step-by-step explanation:
a) The impulse momentum is:
mv1 + ∑Imp(1---->2) = mv2
According the exercise:
v1=0
∑Imp(1---->2) = F(t2-t1)
m=0.2 kg
Replacing:
![0+F(t_(2) -t_(1) )=0.2v_(2)](https://img.qammunity.org/2021/formulas/engineering/college/6uzdwppjk9ratfibel4kpcwpsfzywdfx85.png)
if F=2 kN and t2-t1=2x10^-3 s. Replacing
![0+2x10^(-3) (2x10^(-3) )=0.2v_(2) \\v_(2) =(4)/(0.2) =20m/s](https://img.qammunity.org/2021/formulas/engineering/college/zxplva8y2qh6s9q1bbtgcz4id7mrzlek5p.png)
b) Work and energy in the system is:
T2 - U(2----->3) = T3
where T2 and T3 are the kinetic energy and U(2----->3) is the work.
![T_(2) =(1)/(2) mv_(2)^(2) \\T_(3) =0\\U_(2---3) =-F_(res) x](https://img.qammunity.org/2021/formulas/engineering/college/jsdvo3wt6577fyrueg64r1qu3e5m9g11bk.png)
Replacing:
![(1)/(2) *0.2*20^(2) -F_(res) *0.001=0\\F_(res) =40000N](https://img.qammunity.org/2021/formulas/engineering/college/3m1ger51cnvirn5ppwici45vsrj1511zgg.png)