146k views
1 vote
Consider the matrix shown below:

Consider the matrix shown below:-example-1

1 Answer

5 votes

Answer:

A)


A^(-1)={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}

Explanation:

Given the following matrix
\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right], its inverse is calculated using the formula:


\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] ^(-1)=\frac{1}{det\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]}\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]

#We can therefore calculate the inverse of our matrix as follows:


\frac{1}{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right]}\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]\\\\\\\\{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right]}=1\\\\\\\\\therefore =(1)/(1){\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}\\\\\\\\={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}

Hence, the inverse of the matrix is


A^(-1)={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}

User Vijay Angelo
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories