146k views
1 vote
Consider the matrix shown below:

Consider the matrix shown below:-example-1

1 Answer

5 votes

Answer:

A)


A^(-1)={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}

Explanation:

Given the following matrix
\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right], its inverse is calculated using the formula:


\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] ^(-1)=\frac{1}{det\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]}\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]

#We can therefore calculate the inverse of our matrix as follows:


\frac{1}{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right]}\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]\\\\\\\\{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right]}=1\\\\\\\\\therefore =(1)/(1){\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}\\\\\\\\={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}

Hence, the inverse of the matrix is


A^(-1)={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}

User Vijay Angelo
by
5.4k points