Answer:
Explanation:
7) Volume of the shape = Volume of triangular prism - volume of cylinder
Triangular prism:
![\boxed{ \text{Volume of triangular prism = base area * h }}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qche7cnxwdzvh2sprbl9i0nvj2gnbunmsi.png)
b = 6 ft & height of the triangle = 5 ft
![\sf Base \ area = (1)/(2)* 6* 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/9jezwyqmvio9cdchflkldqqy0y3x0lll4j.png)
= 3*5
= 15 ft²
Volume of prism = 15 * 4
= 60 ft³
Cylinder:
r = 2÷2 = 1 ft & h = 4 ft
Volume of cylinder = 3.14 * 1 * 1 * 4
= 12.56 ft³
Volume of the shape = 60 - 12.56
= 47.44 ft³
8) Volume = Volume of Pyramid - Volume of cone
![\boxed{\text{Volume of the Pyramid = base area * h} }](https://img.qammunity.org/2023/formulas/mathematics/high-school/ut2iin2imkp9iqxh7pihojgp1i0to1mrh0.png)
![\text {base area = length * width}\\\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/h1io1fef9j8fd3ka3prpx1a15ktl8o7v9q.png)
= 9 * 9
= 81 m²
Volume of Pyramid = 81 * 8
= 648 m³
![\boxed{ \text{Volume of cone = (1)/(3) \pi r^(2)h}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qrhhmq23lbmnu7cy55mqjg7k2fs1w7h11t.png)
![\boxed{ \text{Volume of cone = $(1)/(3) \pi r^(2)h$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9og3822e9v082qreqgwdq3pz1pluy4xjan.png)
r = diameter ÷ 2 = 6÷2
r = 3 m & h = 8 m
![\text{ Volume of cone =$(1)/(3)*3.14* 3*3*8$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cnor0sck2wtfvovruc7ao1n1j81ge36ti6.png)
= 3.14 * 3 * 8
= 75.36 m³
Volume of the shape = 648 - 75.36
= 572.64 m³
9) Volume of the shape = volume of cylinder + volume of cone
Cylinder:
h = 7 in ; r = 3
![\boxed{\text{Volume of cylinder =$ \pi r^(2)h$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zrv6tkokbxcbzydv8nicl0ci6bxte6p4lw.png)
![=(22)/(7)*3*3*7](https://img.qammunity.org/2023/formulas/mathematics/high-school/4uns5t085rj9v73awh2w68chov0zaq5grj.png)
= 22 *3 * 3
= 198 in³
Cone:
r = 3 in & h = 4 in
![\text{Volume of cone = $ (1)/(3)*3.14*3*3*4$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mb55dnw3dgdcb78bm67a2vq872idombssw.png)
= 3.14 * 3 * 4
= 37.68 in³
Volume of the shape = 198 + 37.68
= 235.68 in³
10) Volume of the shape = Volume of outer cyliner - volume of inner cylinder
Volume of outer cylinder:
R = 9 m & h = 3 m
Volume of outer cylinder = 3.14 * 9 * 9 * 3
= 763.02 m³
Volume of inner cylinder:
r = 5 m & h = 3 m
Volume of inner cylinder = 3.14 * 5 * 5 * 3
= 235.5 m³
Volume of the shape = 763.02 - 235.5
= 527.52 m³