Answer:
a. Ameribank-$15,157.50
b. Capital Two-$4,646.25
Explanation:
a. Tad's savings is $15,000, we calculate his total amount at the end of the year for each bank:
#Ameribank
![A=P+I=P+PRT\\\\=15000+15000* 0.0105* 1\\\\=\$15,157.50](https://img.qammunity.org/2021/formulas/mathematics/college/ntjlr6nhz2jj5zpjihm0vx9qqgv938g765.png)
#Huffington( we use the effective rate to calculate the compound amount):
![i_m=(1+i/m)^m-1\\\\=(1+0.0095/12)^[12}-1=0.009541\\\\A=P(1+i_m)^n\\\\=15000(1.009541)^1\\\\=\$15,143.12](https://img.qammunity.org/2021/formulas/mathematics/college/pszhtwqvjvbr7vfg65nyw06nule9noydfz.png)
#Sixth-Third, Take 1 yrs=52 weeks:
![i_m=(1+i/m)^m-1\\\\=(1+0.01/52)^(52)-1=0.01005\\\\A=15000(1.01005)^1\\\\=\$15,150.74](https://img.qammunity.org/2021/formulas/mathematics/college/um4eml8no0cxkidpoe06xhlewqk67ja72c.png)
#Hence, Ameribank is the best option as his money grows to $15,157.50 which is greater than all the remaining two options.
b. We use the compound interest formula
to determine which bank gives the best option:
#Capital Two. r=3.75%, n=12,t=4
![A=P(1+r/n)^(nt)\\\\=4000(1+0.0375/12)^(12*4)\\\\=\$4,646.25](https://img.qammunity.org/2021/formulas/mathematics/college/548l1zvrujk2c4x4kpqhpcj5zdcgj6jwkb.png)
#J.C Morgan, t=2, r=3.55% n=12
![A=P(1+r/n)^(nt)\\\\=4000(1+0.0355/12)^(12* 2)\\\\=\$4,293.87](https://img.qammunity.org/2021/formulas/mathematics/college/n5jod12ewa97ymh7e6nbovg6mjnwzzlf1t.png)
#Silverman Slacks, n=12,t=3, r=3.65%
![A=P(1+r/n)^(nt)\\\\=4000(1+0.0365/12)^(12*3)\\\\=\$4,462.14](https://img.qammunity.org/2021/formulas/mathematics/college/b3vwi8m0q97fwki1yiq13w4mnn54pz36km.png)
We compare the investment amounts after t years:
![Capital>Silver>Morgan=4646.25>4462.14>4293.87](https://img.qammunity.org/2021/formulas/mathematics/college/ks5ieqnoeof023g3edksbqn0yh7qc22p5e.png)
Hence, Capital two is the best option with an investment amount of $4,646.25