Complete Question:
Suppose the impulse response of an FIR filter of order m =5 is as follows where the X terms are to be determined.
h = [2,4,3,X,X,X]
a) Assuming H(z) is a linear- phase filter, find the complete impulse response. If there are multiple solutions, find each of them
b) For each solution in part (a), indicate the linear-phase FIR filter type
c) For each solution in part (a), find the phase offset, α, and the group delay, D(f)
Answer:
a1) For symmetric impulse response, h(n) = [2,4,3,3,4,2]
a2)For asymmetric impulse response h(n) = [2,4,3,-3,-4,-2]
b1) For symmetric impulse response,the FIR filter is a low pass filter
b2) For symmetric impulse response,, the FIR filter is a differentiator
c1) Phase offset = -2.5w
c2) D(f) = π/2 - 2.5w
Explanation:
a) The impulse response, h can either be symmetric or anti-symmetric about α = m/2
i) When the impulse response, h is symmetric about α = m/2, h becomes:
h(n) = [2,4,3,3,4,2]
ii) When the impulse response, h is anti-symmetric about α = m/2, h becomes:
h(n) = [2,4,3,-3,-4,-2]
b) Relationship for converting h(n) into the frequency domain using Fourier transform:
, n= 1,2,3,4,5
i) For h(n) = [2,4,3,3,4,2]
![H(e^(jw) ) = h(0) + h(1) e^(-jwn) + h(2) e^(-2jw) + h(3) e^(-3jw) + h(4) e^(-4jw) + h(5) e^(-5jw)](https://img.qammunity.org/2021/formulas/mathematics/college/u4ymigdpbss33whrmrakzbkbh2sluq3lye.png)
![H(e^(jw) ) = 2 + 4 e^(-jw) + 3 e^(-2jw) + 3 e^(-3jw) + 4 e^(-4jw) + 2 e^(-5jw)](https://img.qammunity.org/2021/formulas/mathematics/college/1n725y65prymtt55qs0dzwq07kyzhwg2iy.png)
When
,
![H(e^(j0)) = 18](https://img.qammunity.org/2021/formulas/mathematics/college/5hwvrpi7swbaer4hh5c2iuco5jdjukhyb3.png)
When w = π,
![H(e^(j\pi )) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/s3jng85aifwqamtyi77jgwznl1mabbz47i.png)
This is the property of a low pass filter, hence the FIR filter is a low pass filter
ii) For h(n) = [2,4,3,-3,-4,-2]
![H(e^(jw) ) = h(0) + h(1) e^(-jwn) + h(2) e^(-2jw) + h(3) e^(-3jw) + h(4) e^(-4jw) + h(5) e^(-5jw)](https://img.qammunity.org/2021/formulas/mathematics/college/u4ymigdpbss33whrmrakzbkbh2sluq3lye.png)
![H(e^(jw) ) = 2 + 4 e^(-jw) + 3 e^(-2jw) - 3 e^(-3jw) - 4 e^(-4jw) - 2 e^(-5jw)](https://img.qammunity.org/2021/formulas/mathematics/college/ib8q40gdu96efx7m4l66pqsqg3j2adpv23.png)
When
![w=0, H(e^(jo)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/zwl9nfy9ryj53njbf4ykx4k4fs567zgu3a.png)
When
![w=\pi , H(e^(j \pi)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/8gs4n4x554dq2l5qw78gfmwro12j2ptdi7.png)
This is the property of a differentiator, hence the FIR filter is a differentiator.
c1) Phase offset = -wα
α = 5/2 = 2.5
Phase offset = -2.5w
c2) Group delay, D(f) = π/2 - αw
D(f) = π/2 - 2.5w