Answer:
a) txy = 1115.5 MPa
b) oy is independent of pressure, thus txy=1115.5 MPa
Step-by-step explanation:
The stress tensor is:
![o=\left[\begin{array}{ccc}-p&t&0\\t&-p&0\\0&0&-p\end{array}\right]](https://img.qammunity.org/2021/formulas/engineering/college/ez9mbdxitokcwk1x6qx77f29kzkl8avy9s.png)
where p is the pressure, t is the shear stress
![oy=\sqrt{(oxx^(2)+oyy^(2)+ozz^(2)-oxxoyy-oyyozz-ozzoxx)+3(txy^(2)+tyz^(2)+tzx^(2) }](https://img.qammunity.org/2021/formulas/engineering/college/mf5gallohsguvgbj633fhpjotojlcp4vfl.png)
substituting the matrix values:
![oy=\sqrt{p^(2)+p^(2)+p^(2)-p^(2)-p^(2)-p^(2)+3(t^(2)+0+0) } =√(3) t](https://img.qammunity.org/2021/formulas/engineering/college/8zivvx8pwn6ixbi3oj7a0jdqy2mt17itkg.png)
a)
![oy=(oo)/(F) =√(3) t=(300)/(1.5)](https://img.qammunity.org/2021/formulas/engineering/college/9m623qludgzrk2sacs1kzcheguckpl8zrm.png)
Clearing t:
t=1115.5 MPa = txy
b) oy is independent of pressure, thus txy=1115.5 MPa