Answer : The pH at equivalence is, 9.21
Explanation : Given,
Concentration of
= 0.5870 M
Volume of
= 90.0 mL = 0.09 L (1 L = 1000 mL)
First we have to calculate the moles of
![HCH_3CO_2](https://img.qammunity.org/2021/formulas/chemistry/college/lnq0x7edqo3jx4hgvtm1s7xo152wmqegar.png)
![\text{Moles of }HCH_3CO_2=\text{Concentration of }HCH_3CO_2* \text{Volume of }HCH_3CO_2](https://img.qammunity.org/2021/formulas/chemistry/college/knp5h505wbn61do29l4gqyzdns16f7cwnm.png)
![\text{Moles of }HCH_3CO_2=0.5870M* 0.09L=0.0528mol](https://img.qammunity.org/2021/formulas/chemistry/college/3v0dheb1ez0lcyp0uz7ztxs4jyqn58cvs2.png)
As we known that at equivalent point, the moles of
and NaOH are equal.
So, Moles of NaOH = Moles of
= 0.0528 mol
Now we have to calculate the volume of NaOH.
![\text{Volume of }NaOH=\frac{\text{Moles of }NaOH}{\text{Concentration of }NaOH}](https://img.qammunity.org/2021/formulas/chemistry/college/mlt5pz2gk7fn580qw3qnesswb2lro3fdy9.png)
![\text{Volume of }NaOH=(0.0528mol)/(0.4794M)](https://img.qammunity.org/2021/formulas/chemistry/college/cscuustic8vp03k86hzysnkmno8zqsa31v.png)
![\text{Volume of }NaOH=0.0253L](https://img.qammunity.org/2021/formulas/chemistry/college/lbpy4aexx9h47lh62ul9vltwos1wfdxlfl.png)
Total volume of solution = 0.09 L + 0.0253 L = 0.1153 L
Now we have to calculate the concentration of KCN.
The balanced equilibrium reaction will be:
![HCH_3CO_2+NaOH\rightleftharpoons CH_3CO_2Na+H_2O](https://img.qammunity.org/2021/formulas/chemistry/college/cuvbff6ezk9gogqd240dfevo8q9q9wlz6y.png)
Moles of
= 0.0528 mol
![\text{Concentration of }CH_3CO_2Na=(0.0528mol)/(0.1153L)=0.458M](https://img.qammunity.org/2021/formulas/chemistry/college/2e7h5xgcw9i7kyaxji5syinbb7azf1n5mf.png)
At equivalent point,
![pH=(1)/(2)[pK_w+pK_a+\log C]](https://img.qammunity.org/2021/formulas/chemistry/college/cvxc4ri024tdu4yedmekcr3wix0gtv39cv.png)
Given:
![pK_w=14\\\\pK_a=4.76\\\\C=0.458M](https://img.qammunity.org/2021/formulas/chemistry/college/bbac21x3xzczm6osggwt9ujlxzk7irpcfo.png)
Now put all the given values in the above expression, we get:
![pH=(1)/(2)[14+4.76+\log (0.458)]](https://img.qammunity.org/2021/formulas/chemistry/college/xa85gqappj52gp3al3os02dmu7i80qi955.png)
![pH=9.21](https://img.qammunity.org/2021/formulas/chemistry/college/l3qzx6gkiogfe4oiabgc0v8x31593uwsr3.png)
Therefore, the pH at equivalence is, 9.21