Answer:
160 Hz.
Step-by-step explanation:
For nth harmonic, the fundamental frequency,
![f_n=(n)/(2L)\sqrt{(T)/(\mu) }](https://img.qammunity.org/2021/formulas/physics/college/l43goh4qs7ahn3hg2onfdzqsj6czwl5ylb.png)
Here T is the tension in string, \mu is the mass/unit of length of the string and L is the string length.
Given n = 1 frequency of the 1st harmonic (the Fundamental), T = 859 N,
L= 339 cm =3.39 m and
.
Substituting these values, we get
![f_1=(1)/(2*3.39m) \sqrt{(859N)/(0.00073\ kg/m ) }](https://img.qammunity.org/2021/formulas/physics/college/hghr65vwjsdf64vhxwrg3jh4c54rjsuhz3.png)
![f_1= 0.147 *1084.76=159.99 Hz](https://img.qammunity.org/2021/formulas/physics/college/gw4tqk98660xxl1kzrci6v67s02o59aaap.png)
![f_1=160 Hz](https://img.qammunity.org/2021/formulas/physics/college/319pun187o24lw5bhzpuc7ol5n4syc968p.png)
Thus, the fundamental frequency is 160 Hz.