The speed at which sound travels through the gas in the tube is 719.94m/s
Step-by-step explanation:
Given:
Frequency, f = 11999Hz
Wavelength, λ = 0.03m
Velocity, v = ?
Sound speed in the tube is calculated by multiplying the frequency v by the wavelength λ.
As the sound loudness changed from a maximum to a minimum, then we know the sound interference in the case changed from constructive interference (the two sound waves are in phase, i.e. peaks are in a line with peaks and so the troughs), to a destructive interference (peaks coinciding with troughs). The least distance change required to cause such a change is a half wavelength distance, so:
λ/2 = 0.03/2
λ = 0.06m
We know,
v = λf
v = 0.06 X 11999Hz
v = 719.94m/s
Therefore, the speed at which sound travels through the gas in the tube is 719.94m/s