![\qquad\qquad\huge\underline{{\sf Answer}}♨](https://img.qammunity.org/2023/formulas/mathematics/high-school/9i0w68d389o7if115lspdd6j8oy1la0lcz.png)
Let's solve ~
If it passes through x, then let's find x when y = 0
![\qquad \tt \dashrightarrow \:0 = {x}^(2) - x - 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/q2j83sh9dwv9kwnr6skbj0rzlgrlphx673.png)
![\qquad \tt \dashrightarrow \: {x}^(2) - 3x + 2x - 6 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/8zkeifd37jx915w6tgazm71t92je16wyyf.png)
![\qquad \tt \dashrightarrow \:x(x - 3) + 2(x - 3) = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/gy43ww56gc669s2ed8faa6ia65geeymqv5.png)
![\qquad \tt \dashrightarrow \:(x - 3) (x + 2) = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ylbszbk84y7jtuaggiy6dr48pnnyxgaugk.png)
So, required values of x are 3 and -2
Now, let's differentiate the equation to get slope slope for tangent ~
![\qquad \tt \dashrightarrow \: m = (d)/(dx) ( {x}^(2) - x - 6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/w9e5gk1e7tlsvnnbmjwvo58b9fipciir2p.png)
![\qquad \tt \dashrightarrow \: m = 2 x - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/fr21azcnpu73kct6kyz5nj5eyy1pt92ui9.png)
Now, plug in the values of x to find slopes of tangents
![\qquad \tt \dashrightarrow \: m _1 = (2 * 3) - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/1ydx5jczk8cf8wa0t9s5vgm8jgl59cgmwn.png)
![\qquad \tt \dashrightarrow \: m_1 = 6 - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/u8npnml1vmdqb4tfmnksuvc2su3yiuw7jf.png)
![\qquad \tt \dashrightarrow \: m _1 = 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/fumo7pm8yrcmcf6br8uu04w1vj0v2g0yl9.png)
and
![\qquad \tt \dashrightarrow \:m_2 = (2 * - 2) - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/6jgsokm3dzjtm4jznf0l5f42qj374tps3y.png)
![\qquad \tt \dashrightarrow \:m_2 = - 4- 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/r7uf3wwbbydnk3bemtb46fbpjx8rxyy8u3.png)
![\qquad \tt \dashrightarrow \:m_2 = - 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/gnwiroc3xaxzn1xex0isr6r4v0vsh1lzl9.png)
We know, tangent are normal are perpendicular. so let's find out slopes of normals m1' and m2'
![\qquad \tt \dashrightarrow \:m _1\cdot m_1 ' = - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/vc6339w39sgyya2akbamswmgnw1i8sxipr.png)
![\qquad \tt \dashrightarrow \:m _1' = (- 1)/(m_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ognc3sp6dcsqgtv8etgdz8zgzd6osy4cfr.png)
![\qquad \tt \dashrightarrow \:m _1' = (- 1)/( 5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/23cvz0ytscipus4cdeq310kl7647tppt4y.png)
and
![\qquad \tt \dashrightarrow \:m _2\cdot m_2 ' = - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/sh9zmdl3ax1gqtvnqagnxr94i5lhdi7dnh.png)
![\qquad \tt \dashrightarrow \:m _2' = (- 1)/(m_2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7ppj16eqwpzt6p1vjk3ulm8t0gklmj7g3c.png)
![\qquad \tt \dashrightarrow \:m _2' = (- 1)/( -5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fa978k222t2vqhxiw9ta5lkhvsffxolivz.png)
![\qquad \tt \dashrightarrow \:m _2' = (1)/( 5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/n3n316da9d7hwk0unvrwcg0sexg51a3iy3.png)
Now, write the equations of normals using point slope form :
Normal 1 : passing through (3 , 0), and slope = -1/5
![\qquad \tt \dashrightarrow \:y - 0 = - (1)/(5) (x - 3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/a2boxn67sx9ds17l0gee394olf4dv64rej.png)
![\qquad \tt \dashrightarrow \:5y = - (x - 3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lfy9z76m794ipwh5kd2pu972534q81utfa.png)
![\qquad \tt \dashrightarrow \:5y = - x + 3](https://img.qammunity.org/2023/formulas/mathematics/high-school/7dp113jwolult2pibqqw01w9deu45be7pc.png)
![\qquad \tt \dashrightarrow \:x + 5y - 3 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/177eltuyfucgq2fumt34qbawojep75xdf1.png)
and
Normal 2 : passing through (-2 , 0), and slope = 1/5
![\qquad \tt \dashrightarrow \:y - 0 = (1)/(5) (x - ( - 2))](https://img.qammunity.org/2023/formulas/mathematics/high-school/pj7yvrk4uwgbah61vuga0ar9gte8rl7op4.png)
![\qquad \tt \dashrightarrow \:5y = x + 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/muxko7n4uo72o07fdro8cdrppmf8b5hbtm.png)
![\qquad \tt \dashrightarrow \ x - 5y + 2 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/1hd7rxsmuvd0kpexqmxidmsml0l7g9315z.png)
That's all for Aunty ~ hope it helps !