Answer:
The highest rate of heat transfer allowed = 0.998kW
Step-by-step explanation:
Given
V = 4L = 4*10^-3m³
vf = 0.001057 m3/kg,
vg = v2 = 1.0037 m3/kg,
uf = 486.82 kJ/kg,
ug = u2 = 2524.5 kJ/kg,
he = 2700.2 kJ/kg
First, we'll calculate the initial mass in the cooker, m1.
This is calculated from the masses of the constituents.
m1 = V(vap)/α(vap) + V(liq)/α(liq)
m1 = ½V(1/α(vap) + 1/α(liq))
m1 = ½*4*10^-3(1/1.0037 + 1/0.001057)
m1 = 1.89414021479089337285534
m1 = 1.894kg
Next, we'll calculate the final mass.
This is given as;
m2 = V/α(vap)
m2 = 4 * 10^-3/1.0037
m2 = 0.00398525455813490086679
m2 = 0.00399kg
m(out) = m1 - m2
m(out) = 1.894 - 0.00399
m(out) = 1.89001kg
Then, we calculate the initial energy.
This is given as;
U1 = m1u1
U1 = (mu)vap + (mu)liq
U1 = ½V(u(vap)/α(vap) + u(liq)/α(liq))
U1 = ½ * 4 * 10^-3 (2524.5/1.0037 + 486.82/0.001057)
U1 = 926.165676118512874172562
U1 = 926.17kJ
Finally, we calculate the rate of heat transfer.
Rate = Q/∆t
Where Q = m2u2 - m1u1 + m(out)u(out)
Q = 0.00399kg * 2524.5 kJ/kg - 926.17kJ + 1.89001kg * 2700.2
Q = 4,187.307757
Rate = 4,187.307757/70 minute
Rate = 4,187.307757/(70 * 60)
Rate = 0.99697803738095238095238
Rate = 0.998kW
Hence, the highest rate of heat transfer allowed is 0.998kW