176k views
0 votes
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = 7n 1 + 8n lim n→[infinity] an = Incorrect:

User Jadli
by
3.3k points

1 Answer

2 votes

Answer:

The sequence diverges

Explanation:

Given the sequence:


a_n=7n(1+8n)=7n+56n^2

Let's use the zero test which states:


\Sigma a_n\\Diverges\hspace{3}if\hspace{3} \lim_(n \to \infty) a_n \\eq0

So, let's find the limit:


\lim_(n \to \infty) 7n+56n^2= \lim_(n \to \infty) 7n + \lim_(n \to \infty) 56n^2

For the first limit:


\lim_(n \to \infty) 7n= 7 \lim_(n \to \infty) n=7* \infty=\infty

For the second limit:


\lim_(n \to \infty) 56n^2=56 \lim_(n \to \infty) n^2 =56(\infty)^2=\infty

So:


\lim_(n \to \infty) 7n+56n^2=\infty +\infty=\infty

Therefore, the sequence diverges

User Valenok
by
2.9k points