Answer:
Step-by-step explanation:
mass per unit length, μ = 2.33 x 10^-3 kg/m
frequency, f = 146.8 Hz
Tension, T = 82.4 N
mass per unit length of another string, μ' = 6.8 x 10^-3 kg/m
Let the tension is T'
Let the length is L.
the formula for the frequency is
![f=(1)/(2L)\sqrt{(T)/(\mu )}](https://img.qammunity.org/2021/formulas/physics/college/tl51o7fddtenrq51cwebe66j7q5msd4tcx.png)
So, the frequency remains same, length remains same but the tension and the mass per unit length is different.
![(1)/(2L)\sqrt{(T)/(\mu )}=(1)/(2L)\sqrt{(T')/(\mu' )}](https://img.qammunity.org/2021/formulas/physics/college/642o5ypttun54pnn3h6bjom8mcgq757kpq.png)
So,
![(T')/(\mu ')=(T)/(\mu)](https://img.qammunity.org/2021/formulas/physics/college/7ph81jr0ur3x0t0ew01leo8vli6u59dfyo.png)
![(T')/(6.8* 10^(-3))=(82.4)/(2.33* 10^(-3))](https://img.qammunity.org/2021/formulas/physics/college/yevbjbv4e3ftb5u9eoul3iu3f8x502g9ku.png)
T' = 240.5 N