Answer:
a. [6.6350,7.3950]
b. ME=0.5150
Explanation:
a. Given that n=40,
and that:
![z_(\alpha/2)=z_(0.05)=1.645](https://img.qammunity.org/2021/formulas/mathematics/college/35ucxbjjha1rdbso3bo0csztqmxe3jrncg.png)
The required 90% confidence interval can be calculated as:
![\bar x\pm(margin \ of \ error)\\\\\bar x\pm z_(\alpha/2)(\sigma)/(√(n))\\\\6.88\pm(1.645* (1.98)/(√(40)))\\\\=[6.3650,7.3950]](https://img.qammunity.org/2021/formulas/mathematics/college/r6n89koagd316ovgkmg4ol3q2qljsmd4sm.png)
Hence, the 90% confidence interval for the population mean cash value of this crop is [6.6350,7.3950]
b. The margin of error at 90% confidence interval is calculated as:
![ME= z_(\alpha/2)(\sigma)/(√(n))\\\\=(1.645* (1.98)/(√(40)))\\\\=0.5150](https://img.qammunity.org/2021/formulas/mathematics/college/xqym9fh0pi8a1gndip69wf5j5bwa5bx7la.png)
Hence, the margin of error is 0.5150