Answer:
See explanation below
Step-by-step explanation:
The reaction between permanganate and oxalic acid, is a redox reaction, and this can be balance in acid medium or basic medium.
The reaction (without being balanced) is the following:
MnO₄⁻ + H₂C₂O₄ -------> Mn²⁺ + CO₂ + H₂O
Now, to get the molarity, we need to use the following expression:
M₁V₁ = M₂V₂ (1)
Where:
1: permanganate
2: oxalic acid
And the moles:
n = M*V (2)
However, expression (1) is only valid when the mole ratio between the two species, is the same (or 1:1). In this case, we do not know if the mole ratio is 1:1 because the reaction is unbalanced. Once the reaction is balanced we will see the mole ratio, and then, use the expression (1) to get the concentration.
Balancing the equation using the acid medium:
MnO₄⁻ + 8H⁺ + 5e⁻ -------> Mn²⁺ + 4H₂O Reduction
H₂C₂O₄ ------------> 2CO₂ + 2e⁻ + 2H⁺ Oxidation
Equalling both equations:
(MnO₄⁻ + 8H⁺ + 5e⁻ -------> Mn²⁺ + 4H₂O) *2
(H₂C₂O₄ ------------> 2CO₂ + 2e⁻ + 2H⁺) * 5
___________________________________
2MnO₄⁻ + 16H⁺ + 10e⁻ -------> 2Mn²⁺ + 8H₂O
5H₂C₂O₄ ------------> 10CO₂ + 10e⁻ + 10H⁺
____________________________________
2MnO₄⁻ + 5H₂C₂O₄ + 6H⁺ -------> 2Mn²⁺ + 10CO₂ + 8H₂O
This is the balanced equation. According to this, we can say that the mole ratio is 2:5, therefore expression (1) becomes:
2M₁V₁ = 5M₂V₂ ---> solving for M₁:
M₁ = 5M₂V₂ / 2V₁ (3)
Now that we know the expression, and the volume required, we need to get the concentration and volume of the acid. However, we do not know that, we only know the mass. So, we have to use the moles of oxalic acid to get the concentration. So replacing (2) in (3) we have:
M₁ = 5n₂ / 2V₁ (4)
Now, to get the moles, we need the molecular weight of the oxalic acid which is:
MM = (2*1) + (2*12) + (4*16) = 90 g/mol
The moles would be:
n = 0.3577 / 90 = 0.00397 moles
Finally, the concentration of the permanganate solution:
M₁ = 5*0.00397 / 2*0.05477
M₁ = 0.1812 M