15.2k views
1 vote
Find the average value of the function g(x) =
(lnx)/(x) over the interval [1, e].

User Wes Winham
by
5.4k points

1 Answer

4 votes

Answer:


\displaystyle average=(1)/(2(e-1))

Explanation:

Average Value of a Function

Given a function g(x), we can compute the average value of g in a given interval (a,b) with the equation:


\displaystyle average=(1)/(b-a)\int_(a)^(b) g(x)dx

We use the given data


\displaystyle average=(1)/(e-1)\int_(1)^(e) (lnx)/(x)dx

We now compute the indefinite integral with a u-substitution


\displaystyle I=\int (lnx)/(x)dx

We'll use the substitution u=lnx, du=dx/x. Then


\displaystyle I=\int u.du

Integrating


\displaystyle I=(u^2)/(2)

Since u=lnx


\displaystyle I=(ln^2x)/(2)

The average value is


\displaystyle average=(1)/(e-1)\left|(ln^2x)/(2) \right|_1^e


\displaystyle average=(1)/(e-1)\left((ln^2e)/(2)-(ln^21)/(2) \right )

Since lne=1, and ln1=0


\displaystyle average=(1)/(e-1)\left((1)/(2)-0 \right )


\displaystyle average=(1)/(2(e-1))

User Cocotwo
by
5.9k points