13.8k views
2 votes
A particular NMOS device has parameters VT N = 0.6 V, L = 0.8µm, tox = 200 Å, and µn = 600 cm2 /V–s. A drain current of ID = 1.2 mA is required when the device is biased in the saturation region at VGS = 3 V. Determine the required channel width of the device.

1 Answer

5 votes

Answer:


W= 3.22 \mu m

Step-by-step explanation:

the transistor In saturation drain current region is given by:


i_D}=K_a(V_(GS)-V_(IN))^2

Making
K_a the subject of the formula; we have:


K_a=\frac {i_D} {(V_(GS) - V_(IN))^2}

where;


i_D = 1.2m


V_(GS)= 3.0V


V_(TN) = 0.6 V


K_a=\frac {1.2m} {(3.0 - 0.6)^2}


K_a = 208.3 \mu A/V^2

Also;


k'_n}=(\mu n ((cm^2)/(V-s) ) \epsilon _(ox)((F)/(cm) ) )/(t_(ox)(cm))

where:


\mu n ((cm^2)/(V-s) ) = 600


\epsilon _(ox)=3.9*8.85*10^(-14)


{t_(ox)(cm)=200*10^(-8)

substituting our values; we have:


k'_n}=((600)(3.988.85*10^(-14)))/((200*10^(-8)))


k'_n}=103.545 \mu A/V^2

Finally, the width can be calculated by using the formula:


W= (2LK_n)/(k'n)

where;

L =
0.8 \mu m


W= (2*0.8 \mu m *208.3 \mu)/(103.545 \mu)


W= 3.22 \mu m

User Jabroni
by
5.5k points