Answer:
The unit cell edge length of the alloy is 0.3112 nm
Step-by-step explanation:
Given;
density of chromium, Cr= 7.19 g/cm³
atomic weight of chromium, Cr = 52.00 g/mol
density of tantalum, Ta = 16.6 g/cm³
atomic weight of tantalum, Ta = 180.95 g/mol
Step 1: determine the average density of the atoms;
![\rho _(Avg.) = (100)/((C_(Cr))/(\rho_(Cr))+ (C_(Ta))/(\rho_(Ta))) \\\\\rho _(Avg.) = (100)/((22)/(7.19)+ (78)/(16.6)) = 12.89\ g/cm^3](https://img.qammunity.org/2021/formulas/engineering/college/a8jm58g5pn4qv2t38aekuyi1e7z8gn7lwq.png)
Step 2: determine the average atomic weight;
![A _(Avg.) = (100)/((C_(Cr))/(A_(Cr))+ (C_(Ta))/(A_(Ta))) \\\\A _(Avg.) = (100)/((22)/(52)+ (78)/(180.95)) = 117.08 \ g/mol](https://img.qammunity.org/2021/formulas/engineering/college/9u2m4regv3efymfham31meiuc87f7u7myy.png)
Step 3: determine the cubic volume of the atoms;
there are 2 atoms per unit cell of a body centered cubic structure.
![V_C = (nA_(Avg.))/(\rho _(Avg.) N_A) = ((2)*117.08)/(12.89(6.023*10^(23)))\\\\V_C =3.016 *10^(-23) \ cm^3/unit \ cell](https://img.qammunity.org/2021/formulas/engineering/college/nwkw7vssd8wohf4id9asvfgu563yxot62d.png)
Step 4: determine the unit cell edge length;
Vc = a³
![a = (V_C)^{(1)/(3)}](https://img.qammunity.org/2021/formulas/engineering/college/zynwa2mlfssqdo09q0ghu0f2iyju6loe99.png)
Where;
a is the edge length
![a = (3.016*10^(-23))^{(1)/(3)} = (30.16*10^(-24))^{(1)/(3)} = 3.112*10^(-8) \ cm](https://img.qammunity.org/2021/formulas/engineering/college/l0cfzckv09lonhzsaeg61uf64c8ng8yuxd.png)
![a = 3.112 *10^(-10) \ m =0.3112 *10^(-9) \ m = 0.3112\ nm](https://img.qammunity.org/2021/formulas/engineering/college/ea3mj8lzd2wjt4n6ssrox7ajcnmzkpocie.png)
Therefore, the unit cell edge length of the alloy is 0.3112 nm