52.8k views
5 votes
If f(x)= 2x^3-12x^2+20x-16 and f(4)= 0, then find all the zeros of f(x) algebraically

2 Answers

5 votes

Answer:


x=4, \quad x=1+i,\quad x=1-i

(one real zero and 2 complex zeros)

Explanation:

Given polynomial:


f(x)= 2x^3-12x^2+20x-16

According to the Factor Theorem, if f(4) = 0 then (x - 4) is a factor of the given polynomial.


\implies f(x)=(x-4)(ax^2+bx+c)

Expand the brackets:


\implies f(x)=ax^3+bx^2+cx-4ax^2-4bx-4c


\implies f(x)=ax^3+(b-4a)x^2+(c-4b)x-4c

Compare coefficients with the given polynomial:


\implies a=2


\implies -4c=-16 \implies c=4


\implies (b-4a)=-12 \implies b-8=-12 \implies b=-4

Substitute the found values of a, b and c:


\implies f(x)=(x-4)(2x^2-4x+4)

To find the zeros of f(x), set the function to zero and solve for x:


\implies (x-4)(2x^2-4x+4)=0


\textsf{Therefore},\: (x - 4) = 0\: \textsf{ and }\: (2x^2-4x+4)=0


\textsf{To solve}\: (2x^2-4x+4)=0\: \textsf{ use the quadratic formula}

Quadratic Formula


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:


\implies x=(-(-4) \pm √((-4)^2-4(2)(4)) )/(2(2))


\implies x=(4 \pm √(-16))/(4)


\implies x=(4 \pm √(16 \cdot -1))/(4)


\implies x=(4 \pm √(16)√(-1))/(4)


\implies x=(4 \pm 4i)/(4)


\implies x=1 \pm i

Therefore, the zeros of the function are:


x=4, \quad x=1+i,\quad x=1-i

(one real zero and 2 complex zeros)

User Rownage
by
3.7k points
6 votes

Answer:

  • x = 4 is the only real zero

Explanation:

Find the zero's of f(x)

  • 2x³ - 12x² + 20x - 16 = 0
  • x³ - 6x² + 10x - 8 = 0
  • x³ - 4x² - 2x² + 8x + 2x - 8 = 0
  • x²(x - 4) - 2x(x - 4) + 2(x - 4) = 0
  • (x - 4)(x² - 2x + 2) = 0
  • (x - 4)(x² - 2x + 1 + 1) = 0
  • (x - 4)[(x - 1)² + 1] = 0
  • x - 4 = 0 ⇒ x = 4, we already know this
  • (x - 1)² + 1 = 0 ⇒ (x - 1)² = - 1, no real solution as the square is never negative
User James Tang
by
3.4k points