52.8k views
5 votes
If f(x)= 2x^3-12x^2+20x-16 and f(4)= 0, then find all the zeros of f(x) algebraically

2 Answers

5 votes

Answer:


x=4, \quad x=1+i,\quad x=1-i

(one real zero and 2 complex zeros)

Explanation:

Given polynomial:


f(x)= 2x^3-12x^2+20x-16

According to the Factor Theorem, if f(4) = 0 then (x - 4) is a factor of the given polynomial.


\implies f(x)=(x-4)(ax^2+bx+c)

Expand the brackets:


\implies f(x)=ax^3+bx^2+cx-4ax^2-4bx-4c


\implies f(x)=ax^3+(b-4a)x^2+(c-4b)x-4c

Compare coefficients with the given polynomial:


\implies a=2


\implies -4c=-16 \implies c=4


\implies (b-4a)=-12 \implies b-8=-12 \implies b=-4

Substitute the found values of a, b and c:


\implies f(x)=(x-4)(2x^2-4x+4)

To find the zeros of f(x), set the function to zero and solve for x:


\implies (x-4)(2x^2-4x+4)=0


\textsf{Therefore},\: (x - 4) = 0\: \textsf{ and }\: (2x^2-4x+4)=0


\textsf{To solve}\: (2x^2-4x+4)=0\: \textsf{ use the quadratic formula}

Quadratic Formula


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:


\implies x=(-(-4) \pm √((-4)^2-4(2)(4)) )/(2(2))


\implies x=(4 \pm √(-16))/(4)


\implies x=(4 \pm √(16 \cdot -1))/(4)


\implies x=(4 \pm √(16)√(-1))/(4)


\implies x=(4 \pm 4i)/(4)


\implies x=1 \pm i

Therefore, the zeros of the function are:


x=4, \quad x=1+i,\quad x=1-i

(one real zero and 2 complex zeros)

User Rownage
by
8.8k points
6 votes

Answer:

  • x = 4 is the only real zero

Explanation:

Find the zero's of f(x)

  • 2x³ - 12x² + 20x - 16 = 0
  • x³ - 6x² + 10x - 8 = 0
  • x³ - 4x² - 2x² + 8x + 2x - 8 = 0
  • x²(x - 4) - 2x(x - 4) + 2(x - 4) = 0
  • (x - 4)(x² - 2x + 2) = 0
  • (x - 4)(x² - 2x + 1 + 1) = 0
  • (x - 4)[(x - 1)² + 1] = 0
  • x - 4 = 0 ⇒ x = 4, we already know this
  • (x - 1)² + 1 = 0 ⇒ (x - 1)² = - 1, no real solution as the square is never negative
User James Tang
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.