Length of arc DB = 14 π feet
Solution:
Radius AB = 18 feet
DC is the diameter of the circle.
∠CAB = 40°
Sum of the adjacent angles in a straight line = 180°
m∠DAB + m∠CAB = 180°
m∠DAB + 40° = 180°
Subtract 40° from both sides.
m∠DAB = 140°
To find the length of arc DB:
![$\text{Arc length} =2 \pi r\left((\theta)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/seounvpxvj9jau3qx6yfb43g364w45tmjs.png)
![$ =2 \pi * 18\left((140^\circ)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/hzq54udon9i90pjn149k9sogbfz1oac8xa.png)
![$ =2 \pi \left((140^\circ)/(20)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/cw3myma8gcxm70ej9l8xu0fil3fnl792za.png)
=
feet
Length of arc DB = 14 π feet