180k views
21 votes
The area of parallelogram is 104 square units and base length is 13. What is the height of the parallelogram?

2 Answers

8 votes

Answer :

  • 8 units

Explanation :

Here,

  • Area of the parallelogram is 104 sq. units

  • Base length of the parallelogram is 13 units.

We know that,


{\longrightarrow \qquad{ \mathfrak{ \pmb{Base * Height = Area_((Parallelogram))}}}}

Now, Substituting the values in the formula :


{\longrightarrow \qquad{ \sf{ {13 * Height = 104}}}}


{\longrightarrow \qquad{ \sf{ {Height = (104)/(13) }}}}</p><p>


{\longrightarrow \qquad{ \pmb { \frak{Height \: \: {= 8}}}}}

Therefore,

  • The Height of the parallelogram is 8 units.
User Pratik Kamani
by
8.8k points
9 votes

Question :-

  • The Area of Parallelogram is 104 units² . Its Base is 13 units . What is the Height of the Parallelogram ?

Answer :-

  • Height of Parallelogram is 8 units .

Explanation :-

As per the provided information in the given question, we have been given that the Area of Parallelogram is 104 units² . Its Base is given as 13 units . And, we have been asked to calculate the Height of the Parallelogram .

For calculating the Height , we will use the Formula :-


\bigstar \: \: \: \boxed{ \sf{ \: Area \: _(Parallelogram) \: = \: Base \: * \: Height \: }}

Therefore , by Substituting the given values in the above Formula :-


\dag \: \: \: \sf { Area \: _(Parallelogram) \: = \: Base \: * \: Height }


\longmapsto \: \: \: \sf { 104 \: = \: 13 \: * \: Height }


\longmapsto \: \: \: \sf { \frac {104}{13} \: = \: Height}


\longmapsto \: \: \: \sf { 8 \: = \: Height}


\longmapsto \: \: \: \textbf {\textsf {Height \: = \: 8 }}

Hence :-

  • Height of Parallelogram = 8 units .


\underline {\rule {204pt} {4pt}}

Additional Information :-


\begin{gathered} \begin{gathered} \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Square) = Side * Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _(Rectangle) = Lenght * Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Triangle) = (1)/(2) * Base * Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Parallelogram) = Base * Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Trapezium) = (1)/(2) * [ \: A + B \: ] * Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _(Rhombus) = (1)/(2) * Diagonal \: 1 * Diagonal \: 2}\end{array}}\end{gathered}\end{gathered} \end{gathered} \end{gathered}

User Ralph King
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories