180k views
21 votes
The area of parallelogram is 104 square units and base length is 13. What is the height of the parallelogram?

2 Answers

8 votes

Answer :

  • 8 units

Explanation :

Here,

  • Area of the parallelogram is 104 sq. units

  • Base length of the parallelogram is 13 units.

We know that,


{\longrightarrow \qquad{ \mathfrak{ \pmb{Base * Height = Area_((Parallelogram))}}}}

Now, Substituting the values in the formula :


{\longrightarrow \qquad{ \sf{ {13 * Height = 104}}}}


{\longrightarrow \qquad{ \sf{ {Height = (104)/(13) }}}}</p><p>


{\longrightarrow \qquad{ \pmb { \frak{Height \: \: {= 8}}}}}

Therefore,

  • The Height of the parallelogram is 8 units.
User Pratik Kamani
by
3.6k points
9 votes

Question :-

  • The Area of Parallelogram is 104 units² . Its Base is 13 units . What is the Height of the Parallelogram ?

Answer :-

  • Height of Parallelogram is 8 units .

Explanation :-

As per the provided information in the given question, we have been given that the Area of Parallelogram is 104 units² . Its Base is given as 13 units . And, we have been asked to calculate the Height of the Parallelogram .

For calculating the Height , we will use the Formula :-


\bigstar \: \: \: \boxed{ \sf{ \: Area \: _(Parallelogram) \: = \: Base \: * \: Height \: }}

Therefore , by Substituting the given values in the above Formula :-


\dag \: \: \: \sf { Area \: _(Parallelogram) \: = \: Base \: * \: Height }


\longmapsto \: \: \: \sf { 104 \: = \: 13 \: * \: Height }


\longmapsto \: \: \: \sf { \frac {104}{13} \: = \: Height}


\longmapsto \: \: \: \sf { 8 \: = \: Height}


\longmapsto \: \: \: \textbf {\textsf {Height \: = \: 8 }}

Hence :-

  • Height of Parallelogram = 8 units .


\underline {\rule {204pt} {4pt}}

Additional Information :-


\begin{gathered} \begin{gathered} \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Square) = Side * Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _(Rectangle) = Lenght * Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Triangle) = (1)/(2) * Base * Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Parallelogram) = Base * Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Trapezium) = (1)/(2) * [ \: A + B \: ] * Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _(Rhombus) = (1)/(2) * Diagonal \: 1 * Diagonal \: 2}\end{array}}\end{gathered}\end{gathered} \end{gathered} \end{gathered}

User Ralph King
by
3.3k points