x = 10.22 in
Solution:
Width of the figure = x in
Length of the figure = (2x + 5) in
Area of the figure = 260 in²
To find the value of x:
Area of the figure = length × width
length × width = 260
(2x + 5) × x = 260
![2x^2+5x=260](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kwloyhzou08jpui3fouiz4nsqkgbjxahcb.png)
Subtract 260 from both sides of the equation.
![2x^2+5x-260=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t5h9t6m2herxsw8k0xivyiu1jghayp1hu6.png)
Factor the above quadratic expression.
Quadratic equation formula:
![$x=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4blsk9oq0bnumgvodsh5lx819g01c6kjf.png)
![$x=\frac{-5 \pm \sqrt{5^(2)-4 \cdot 2(-260)}}{2 \cdot 2}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oe2y9nko2ihs128dxbr0li0jpm3frqpsyw.png)
![$x=(-5 \pm √(2105))/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v1z39ksugazzfypk30fo2pxsr9h08pkpng.png)
![$x=(-5+√(2105))/(4), \ x=(-5-√(2105))/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qutkzmqeybxt1qj31073m8sso0dt2iabz0.png)
x = 10.22, x = –12.72006
Dimension of the figure cannot be measured in negative terms.
Hence x = 10.22 in.