68.2k views
4 votes
Help with trig plz 70 pts. plz give a legit answer no guessing

Help with trig plz 70 pts. plz give a legit answer no guessing-example-1
User Creitve
by
7.5k points

1 Answer

6 votes

Answer:

See explanation

Explanation:

Use trigonometric functions to solve your problems:


\cos \theta=\frac{\text{Adjacent leg}}{\text{Hypotenuse}}\\ \\\sin \theta=\frac{\text{Opposite leg}}{\text{Hypotenuse}}\\ \\\tan \theta=\frac{\text{Opposite leg}}{\text{Adjacent leg}}\\ \\\cot \theta=\frac{\text{Adjacent leg}}{\text{Opposite leg}}

Q1. From the diagram,

Adjacent leg AC = 12

Hypotenuse AB = 13

Then
\cos \theta =(12)/(13)\Rightarrow \theta =\arccos (12)/(13)\approx 22.6^(\circ)

Q2. From the diagram,

Adjacent leg AC = 13

Opposite leg BC = 4

Then
\tan \theta =(4)/(13)\Rightarrow \theta =\arctan (4)/(13)\approx 17.1^(\circ)

Q3. From the diagram,

Adjacent leg AC = 6

Hypotenuse AB = 9

Then
\cos \theta =(6)/(9)\Rightarrow \theta =\arccosn (6)/(9)\approx 48.2^(\circ)

Q4. From the diagram,

Adjacent leg AC = 10

Opposite leg BC = 11.9

Then
\tan \theta =(11.9)/(10)\Rightarrow \theta =\arctan (11.9)/(10)\approx 50^(\circ)

Q5. From the diagram,

Adjacent leg BC = 14

Opposite leg AC = 7.7

Then
\tan \theta =(7.7)/(14)\Rightarrow \theta =\arctan (7.7)/(14)\approx 28.8^(\circ)

Q6. From the diagram,

Adjacent leg BC = 4

Hypotenuse AB = 5

Then
\cos \theta =(4)/(5)\Rightarrow \theta =\arccosn (4)/(5)\approx 36.9^(\circ)

Q7. From the diagram,

Adjacent leg BC = 4.4

Hypotenuse AB = 11

Then
\cos \theta =(4.4)/(11)\Rightarrow \theta =\arccosn (4.4)/(11)\approx 66.4^(\circ)

User Silver Quettier
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories