Answer:
See explanation
Explanation:
Use trigonometric functions to solve your problems:
![\cos \theta=\frac{\text{Adjacent leg}}{\text{Hypotenuse}}\\ \\\sin \theta=\frac{\text{Opposite leg}}{\text{Hypotenuse}}\\ \\\tan \theta=\frac{\text{Opposite leg}}{\text{Adjacent leg}}\\ \\\cot \theta=\frac{\text{Adjacent leg}}{\text{Opposite leg}}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h3r2hddzhdlo3je0pit9ev4ojyknjquru3.png)
Q1. From the diagram,
Adjacent leg AC = 12
Hypotenuse AB = 13
Then
![\cos \theta =(12)/(13)\Rightarrow \theta =\arccos (12)/(13)\approx 22.6^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t4kgjw50amqm0alilmy5plb4970b18emw4.png)
Q2. From the diagram,
Adjacent leg AC = 13
Opposite leg BC = 4
Then
![\tan \theta =(4)/(13)\Rightarrow \theta =\arctan (4)/(13)\approx 17.1^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7d9p0kiwibbu4urfmwrf3u8gg8o12wz53a.png)
Q3. From the diagram,
Adjacent leg AC = 6
Hypotenuse AB = 9
Then
![\cos \theta =(6)/(9)\Rightarrow \theta =\arccosn (6)/(9)\approx 48.2^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gctqyvla8t1mkoyqdigh7mw0065k2n3nwv.png)
Q4. From the diagram,
Adjacent leg AC = 10
Opposite leg BC = 11.9
Then
![\tan \theta =(11.9)/(10)\Rightarrow \theta =\arctan (11.9)/(10)\approx 50^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qbpvu1orrm5voh007b6n75cdiwwmd9unyx.png)
Q5. From the diagram,
Adjacent leg BC = 14
Opposite leg AC = 7.7
Then
![\tan \theta =(7.7)/(14)\Rightarrow \theta =\arctan (7.7)/(14)\approx 28.8^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a5zrl188gxxbqdwrjll0m3nt8if678f9iv.png)
Q6. From the diagram,
Adjacent leg BC = 4
Hypotenuse AB = 5
Then
![\cos \theta =(4)/(5)\Rightarrow \theta =\arccosn (4)/(5)\approx 36.9^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gqzlr9g01tuodb7c9xycfqm7yuh953n0it.png)
Q7. From the diagram,
Adjacent leg BC = 4.4
Hypotenuse AB = 11
Then
![\cos \theta =(4.4)/(11)\Rightarrow \theta =\arccosn (4.4)/(11)\approx 66.4^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z6d8wpit8adj0tx0a10olwx3zn40cf3t17.png)