Answer:
Therefore,
The area of the sector is 15.09 unit².
Explanation:
Given:
Circle with,
radius = r = 6 unit
central angle = θ = 48°
pi = 3.143
To Find:
Area of sector = ?
Solution:
If 'θ' is in degree the area of sector is given as
![\textrm{Area of Sector}=(\theta)/(360)* \pi r^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/k1j7far7y6klh6tp8g5c8xh38pjaebrjkp.png)
Substituting the values we get
![\textrm{Area of Sector}=(48)/(360)* 3.143* 6^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ccuvef59qnjgle8pxraltb6rtjxok0tggr.png)
rounded to nearest hundredth
Therefore,
The area of the sector is 15.09 unit².