90.8k views
2 votes
A steady, incompressible, two-dimensional (in the x-y plane) velocity field is given by V→=(0.523−1.88x+3.94y)i→+(−2.44+1.26x+1.88y)j→ . Calculate the acceleration at the point (x,y) = (-1, 3.5).

User Riezebosch
by
4.8k points

1 Answer

5 votes

Answer:


\vec a = -19,096 \cdot i + 25.818 \cdot j

Step-by-step explanation:

According to the definition of the derivative of vectorial sum and the physical concept of acceleration, the required expression is:


\vec a = (d v_(x))/(dt) \cdot i + (d v_(y))/(dt) \cdot j + (d v_(z))/(dt) \cdot k


\vec a = (-1.88\cdot (dx)/(dt) + 3.94 \cdot (dy)/(dt))\cdot i + (1.26 \cdot (dx)/(dt) + 1.88 \cdot (dy)/(dt))\cdot j

Where:


(dx)/(dt) = 0.523 - 1.88 \cdot x + 3.94 \cdot y\\(dy)/(dt) = - 2.44 + 1.26 \cdot x + 1.88 \cdot y\\

The acceleration at given point is calculated as follows:


(dx)/(dt) = 16.193\\(dy)/(dt) = 2.88


\vec a = -19,096 \cdot i + 25.818 \cdot j

User SaroVin
by
4.4k points