Answer:
Explanation:
Given is a function
![f(x)=-x^3+2x^2+2x+1](https://img.qammunity.org/2021/formulas/mathematics/college/hqu1s1ef6693wcsn470vjdehrzbil8lf6o.png)
![f(6) = -6^3+2(6^2)+2(6)+1\\=-131\\](https://img.qammunity.org/2021/formulas/mathematics/college/jhipowb6hbcnrvi9uqp43z5jnb9jffplpw.png)
![f(-2) = -(-2)^3+2(-2)^2+2(-2)+1\\=13](https://img.qammunity.org/2021/formulas/mathematics/college/af97c4bd3hgx02j7sbbk4yb4ltz3sdg29y.png)
Average slope of this function is change of f(x) in (-2,6)/change of x in (-2,6)
=
![(-131-13)/(8) \\=-18](https://img.qammunity.org/2021/formulas/mathematics/college/p8q5fzodao8wwqd7qq1o94iodfucfovb9k.png)
By mean value theorem there exists a c such that f'(c) = -18
i.e.
![-3x^2+4x+2 =-8\\3x^2-4x-10 =0\\](https://img.qammunity.org/2021/formulas/mathematics/college/9fkarln1sq9vh5bmj4fvtjlrxdwf8s4hw6.png)
Using quadratic formula
x = 2.61, -1.277
Out of these only 2.61 lies in the given interval
c = 2.61