Answer:
270725 different ways
Explanation:
The problem tells us that the order of the letters does not matter. Therefore, in the combination the order is NOT important and is signed as follows:
C (n, r) = n! / r! (n - r)!
We have to n = 52 and r = 4
C (52, 4) = 52! / 4! * (52-4)! = 52! / (4! * 48!) = 270725
Which means that there are 270725 different ways in total to make that raffle