217k views
5 votes
Which statements are true when verifying the solution set of |6-x/3|>18 as x <-36 or x > 72?

User Mesop
by
3.2k points

2 Answers

6 votes

Answer: 2, 3, 4, & 6.

Step-by-step explanation: edge 2021

Which statements are true when verifying the solution set of |6-x/3|>18 as x &lt-example-1
User Yuki  Yoshida
by
3.8k points
4 votes

Since, you have not mentioned the statements, but I am solving the expression as well as verifying which anyways may be able to make you understand the concept.

Answer:

Both
x<-36\quad \mathrm{or}\quad \:x>72 are the True solutions.

Explanation:

Considering the expression


\left|6-(x)/(3)\right|>18


\mathrm{Apply\:absolute\:rule}:\quad \mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad \mathrm{or}\quad \:u\:>\:a


6-(x)/(3)<-18\quad \mathrm{or}\quad \:6-(x)/(3)>18

solving


6-(x)/(3)<-18


6-(x)/(3)-6<-18-6


-(x)/(3)<-24


3\left(-(x)/(3)\right)<3\left(-24\right)


\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}


\left(-x\right)\left(-1\right)>\left(-72\right)\left(-1\right)


x>72

also solving


6-(x)/(3)>18


6-(x)/(3)-6>18-6


-(x)/(3)>12


-x>36


\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}


\left(-x\right)\left(-1\right)<36\left(-1\right)


x<-36


\mathrm{Combine\:the\:intervals}


x<-36\quad \mathrm{or}\quad \:x>72

Verifying the solution:

Putting the value x < -36 in
\left|6-(x)/(3)\right|>18

let suppose x = -37 which is < -36


\left|6-(x)/(3)\right|>18


\left|6-(\left(-37\right))/(3)\right|>18


\mathrm{Apply\:rule}\:-\left(-a\right)=a


=\left|6+(37)/(3)\right|


=\left|(55)/(3)\right|


\mathrm{Apply\:absolute\:rule}:\quad \left|a\right|=a,\:a\ge 0


(55)/(3)>18


\mathrm{Therefore,\:the\:solution\:is}


\mathrm{True}

also putting the value x > 72

let suppose x = 73 which is > 72


|6-(\left(73\right))/(3)|>\:18


=\left|-(55)/(3)\right|


\mathrm{Apply\:absolute\:rule}:\quad \left|-a\right|=a


=(55)/(3)


(55)/(3)>18


\mathrm{Therefore,\:the\:solution\:is}


\mathrm{True}

So, both
x<-36\quad \mathrm{or}\quad \:x>72 are the True solutions.

User BrianHT
by
4.7k points