83.7k views
5 votes
Find the value of each trigonometric ratio

Find the value of each trigonometric ratio-example-1
User Syed Aqeel
by
8.2k points

1 Answer

3 votes

The value of each trigonometric ratio is


$\sin A=(15)/(17), \ \cos A=(8)/(17), \ \tan A =(15)/(8)


$\csc A=(17)/(15), \ \sec A=(17)/(8), \ \cot A =(8)/(15)

Solution:

The given triangle is right triangle.

AC (hypotenuse) = 34, AB (adjacent) = 16, BC (opposite) = 30

To find the trigonometric ratios:

Using trigonometric formulas for right triangle,


$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}


$\sin A=(BC)/(AC)


$\sin A=(30)/(34)=(15)/(17)


$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}


$\cos A=(AB)/(AC)


$\cos A=(16)/(34)=(8)/(17)


$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}


$\tan A=(BC)/(AB)


$\tan A=(30)/(16)=(15)/(8)


$\csc A =(1)/(\sin A)


$\csc A =(17)/(15)


$\sec A =(1)/(\cos A)


$\sec A =(17)/(8)


$\cot A =(1)/(\tan A)


$\cot A =(8)/(15)

Hence the value of each trigonometric ratio is


$\sin A=(15)/(17), \ \cos A=(8)/(17), \ \tan A =(15)/(8)


$\csc A=(17)/(15), \ \sec A=(17)/(8), \ \cot A =(8)/(15)

User Genna
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories