Answer:
![1.156* 10^(24)\ kg](https://img.qammunity.org/2021/formulas/physics/college/hrc1gbhfuo082dtqnmfjoxc9bvn8apqv5f.png)
Step-by-step explanation:
Given:
Gravity of Mars = 0.38 times the gravity at Earth
Gravity of Earth is,
![g_(Earth)=9.8\ m/s^2](https://img.qammunity.org/2021/formulas/physics/college/qhsmj02tflpnpzi4jnpr6lf0t5b4b9yxaj.png)
Radius of Mars (R) = 3400 km
Mass of mars (M) = ?
We know that, the acceleration due to gravity of a planet of mass 'M' and radius 'R' is given as:
![g=(GM)/(R^2)](https://img.qammunity.org/2021/formulas/physics/high-school/to4u8jsvijg0aeua63jz6cw1vb8cjy4to7.png)
Now, as per question:
![g_(Mars)=0.68g_(Earth)](https://img.qammunity.org/2021/formulas/physics/college/fwiw6tynr4szlbrqo2360lgyad7pbvt0t4.png)
Plug in 9.8 for
and solve for
. This gives,
![g_(Mars)=0.68* 9.8=6.67\ m/s^2](https://img.qammunity.org/2021/formulas/physics/college/3nlbc9khy57zzp9tpugc7sbj7vizboh49e.png)
Now, plug in this value in the above equation and solve for 'M'. This gives,
![6.67=(6.67* 10^(-11)M)/((3400* 10^3)^2)\\\\1.156* 10^(13)=10^(-11)M\\\\M=(1.156* 10^(13))/(10^(-11))\\\\M=1.156* 10^(24)\ kg](https://img.qammunity.org/2021/formulas/physics/college/26j7mgweq53h4oebxhkhncl77as5yvzz7y.png)
Therefore, the mass of Mars is
.