Answer:
a) 22.94 psi
b)
![5.93*10^(-5)](https://img.qammunity.org/2021/formulas/mathematics/college/s8uo3iz10j2gx2whgkr31txx2jwgj5yuy4.png)
Explanation:
a)The pressure at which will trigger a warning is
31 - 31*0.26 = 22.94 psi
b) The probability that that the TPMS will trigger warning at 22.94 psi, given that tire pressure has a normal distribution with average of 31 psi and standard deviation of 2 psi
![f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {x-\mu }{\sigma }}\right)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/od3xyrb2qbop3vnnudwvjsholdioi0bups.png)
where x = 22.94,
![\mu = 31, \sigma = 2](https://img.qammunity.org/2021/formulas/mathematics/college/uqj3srcxk72x5n36g6de4is4o51y4qawbn.png)
![f(22.94)={\frac {1}{2 {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {22.94-31}{2 }}\right)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/66kkvpcllmvvh3o7xfbixdq018igog7hvq.png)
![f(22.94)=0.2e^(-8.12) = 5.93*10^(-5)](https://img.qammunity.org/2021/formulas/mathematics/college/47ra4tn2yw3hfmd466x9ofbbx352w0ezi7.png)