Answer : The molal freezing point depression constant of liquid X is,
![4.12^oC/m](https://img.qammunity.org/2021/formulas/chemistry/college/st6kyacfk4i1kgyrdjksyytpri25dsaxt1.png)
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of liquid X (solvent) = 450 g = 0.450 kg
Molar mass of urea = 60 g/mole
Formula used :
![\Delta T_f=i* K_f* m\\\\T^o-T_s=i* K_f*\frac{\text{Mass of urea}}{\text{Molar mass of urea}* \text{Mass of liquid X Kg}}](https://img.qammunity.org/2021/formulas/chemistry/college/eu1a6isurk9zc2hcg69m5njqkvrcg8cu9y.png)
where,
= change in freezing point
= freezing point of solution =
![-0.5^oC](https://img.qammunity.org/2021/formulas/chemistry/college/hw3a0iw3lcki4wdtb76n8frq1ad3hk0i0g.png)
= freezing point of liquid X =
![0.4^oC](https://img.qammunity.org/2021/formulas/chemistry/college/yicqln201y89xspnf1gr65tugp8phadb2z.png)
i = Van't Hoff factor = 1 (for non-electrolyte)
= Molal-freezing-point-depression constant = ?
m = molality
Now put all the given values in this formula, we get
![0.4^oC-(-0.5^oC)=1* K_f* (5.90g)/(60g/mol* 0.450kg)](https://img.qammunity.org/2021/formulas/chemistry/college/mu35xnfk48fzsgf0ifn02jie4up6l3j90v.png)
![K_f=4.12^oC/m](https://img.qammunity.org/2021/formulas/chemistry/college/3vuqkmw554e4oyfdedgifmjxtp6jz4wnhy.png)
Therefore, the molal freezing point depression constant of liquid X is,
![4.12^oC/m](https://img.qammunity.org/2021/formulas/chemistry/college/st6kyacfk4i1kgyrdjksyytpri25dsaxt1.png)