Here is the full question:
The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:
![k=\sqrt{(I)/(M) }](https://img.qammunity.org/2021/formulas/physics/high-school/fme8451xbf431uqpvb7yxxko5d3p895qfa.png)
The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.
Answer:
a) 0.85 m
b) 0.98 m
c) 0.76 m
Step-by-step explanation:
Given that: the radius of gyration
So, moment of rotational inertia (I) of a cylinder about it axis =
![(MR^2)/(2)](https://img.qammunity.org/2021/formulas/physics/high-school/eo5a3utuql4m8je47xwfip2fh4a7rqscwn.png)
![k=\sqrt{((MR^2)/(2))/(M) }](https://img.qammunity.org/2021/formulas/physics/high-school/gzznpadbobdpcljdxyhcvpow7utu5bc7s3.png)
![k=\sqrt{{(MR^2)/(2)}* (1)/(M) }](https://img.qammunity.org/2021/formulas/physics/high-school/jgiou6cus8mtl2goz4s25miho2769b3rn9.png)
![k=\sqrt{{(R^2)/(2)}](https://img.qammunity.org/2021/formulas/physics/high-school/60ce4z7722j82tz7qjgmpmzghrw7zttw6k.png)
![k={(R)/(√(2))](https://img.qammunity.org/2021/formulas/physics/high-school/dwajf809eez61o5lkteuamhtj5uh50bds8.png)
![k={(1.20m)/(√(2))](https://img.qammunity.org/2021/formulas/physics/high-school/dbe020199u7ltypsfocflp7kth021rpg26.png)
k = 0.8455 m
k ≅ 0.85 m
For the spherical shell of radius
(I) =
![(2)/(3)MR^2](https://img.qammunity.org/2021/formulas/physics/high-school/4ozm2fhq9u5hfsvpw77no3l5gr22mg7un8.png)
![k = \sqrt{((2)/(3)MR^2)/(M) }](https://img.qammunity.org/2021/formulas/physics/high-school/no2x54f8sfnowkukimncq6ixlsdowa6znh.png)
![k = \sqrt{(2)/(3) R^2}](https://img.qammunity.org/2021/formulas/physics/high-school/ar8omb49l12u5nxanbdwuwfv36hcukfy15.png)
![k = \sqrt{(2)/(3) }*R](https://img.qammunity.org/2021/formulas/physics/high-school/iu0rnntww7qym8yxf8fyoe7ogv3sho5bld.png)
![k = \sqrt{(2)/(3)} *1.20](https://img.qammunity.org/2021/formulas/physics/high-school/czlo86b7s0rmrchdt8wrjjjt6262itlngb.png)
k = 0.9797 m
k ≅ 0.98 m
For the solid sphere of radius
(I) =
![(2)/(5)MR^2](https://img.qammunity.org/2021/formulas/physics/high-school/jlz7dkgvhi2ut06p8m9tk3mzu8r9fjtzhw.png)
![k = \sqrt{((2)/(5)MR^2)/(M) }](https://img.qammunity.org/2021/formulas/physics/high-school/n5cyzfvpkvg95d3vr5qkyou4eaod65wf5n.png)
![k = \sqrt{(2)/(5) R^2}](https://img.qammunity.org/2021/formulas/physics/high-school/o3pxyq1y3721gqvqaaunedovo3rrr9j52m.png)
![k = \sqrt{(2)/(5) }*R](https://img.qammunity.org/2021/formulas/physics/high-school/2uqxuu4iqdslolt6xqsir2e2krgmhjabhy.png)
![k = \sqrt{(2)/(5)} *1.20](https://img.qammunity.org/2021/formulas/physics/high-school/4ccdl5o1x8may6174qmxl73yt9skhwlg3v.png)
k = 0.7560
k ≅ 0.76 m