Answer:
![\displaystyle (U)/(U_o)=(1)/(2)](https://img.qammunity.org/2021/formulas/physics/college/ufmfrrrm3y4qaede2vflnpn8l9ji6xj20h.png)
Step-by-step explanation:
Energy Stored in Capacitors
The capacitance of a parallel-plate capacitor is given by
![\displaystyle C=\epsilon_0(A)/(d)](https://img.qammunity.org/2021/formulas/physics/college/ujyi17iw6x52ez38vkcy3elhqwhsfrqqkc.png)
Where
is the permitivity of the dielectric, A is the area of the plates and d is their separation. If the separation was doubled, the new capacitance would be
![\displaystyle C'=\epsilon_0(A)/(2d)=(C)/(2)](https://img.qammunity.org/2021/formulas/physics/college/5x1uuz34l2n130fzsv3omr3iwmzg6jw1wz.png)
The energy stored in the initial condition is
![\displaystyle U_o=(CV^2)/(2)](https://img.qammunity.org/2021/formulas/physics/college/l65vzky4frc3bj3ko1l83h7qub748w8plj.png)
And the energy stored when the separation doubles is
![\displaystyle U=(CV^2)/(4)](https://img.qammunity.org/2021/formulas/physics/college/sb8dyp66w378rcoy8fhuwx9hkgbnz3wv9d.png)
Thus the ratio
![\displaystyle (U)/(U_o)=((CV^2)/(4))/((CV^2)/(2))=(1)/(2)](https://img.qammunity.org/2021/formulas/physics/college/zcx1d89w721anqdiloh9677z795v08gobb.png)
![\boxed{\displaystyle (U)/(U_o)=(1)/(2)}](https://img.qammunity.org/2021/formulas/physics/college/ofzr19iixbxor4cznxv9z4q3hl9o9bkzhk.png)
The energy is half the initial energy