173k views
3 votes
Which expression is equivalent to StartFraction m minus 4 Over m + 4 EndFraction divided by (m + 2) ?

StartFraction m minus 4 Over (m + 4) (m + 2) EndFraction
StartFraction (m + 4) (m + 2) Over m minus 4 EndFraction
StartFraction (m minus 4) (m + 2) Over m + 4 EndFraction
StartFraction m + 4 Over (m minus 4) (m + 2) EndFraction

2 Answers

4 votes

Answer:

A: m-4/(m+4)(m+2)

Explanation:

Used symbolab.

Which expression is equivalent to StartFraction m minus 4 Over m + 4 EndFraction divided-example-1
User Jakebrinkmann
by
5.2k points
4 votes

Expression
(m+4)/(m−4) /(m+2) is equivalent to
((m - 4) )/((m + 4) (m + 2)). So, Option A is the right choice.

To answer this question, we can use the following steps:

Rewrite the division as multiplication by the reciprocal.


(m-4)/(m+4) / (m+2) = (m-4)/(m+4) * (1)/(m+2)

Multiply the two numerators and multiply the two denominators.


(m-4)/(m+4) * (1)/(m+2) = \frac{(m-4) * 1} {(m+4) * (m+2)}

Simplify the expression.


\frac{(m-4) * 1} {(m+4) * (m+2)} = (m-4)/(m^2+6m+8)

Therefore, the only expression that is equivalent to
(m+4)/(m−4) /(m+2) is:
(m-4)/(m^2+6m+8)

So the answer is:
((m - 4) )/((m + 4) (m + 2)) Option A is the right choice.

User Tguzella
by
5.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.