Answer:
(a). The capacitance is
![6.43*10^(-12)\ F](https://img.qammunity.org/2021/formulas/physics/college/2s77oiv2cp19xauyb9xfq6ofv57p7b3sii.png)
(b). The potential difference is necessary to produce these charges on the cylinders are 2.41 V.
Step-by-step explanation:
Given that,
Charge = 15.5 pC
Inner Radius = 0.600 mm
Outer radius = 5.20 mm
Length = 25.0 cm
(a). We need to calculate the capacitance
Using formula of capacitor
![C=(2\pi\epsilon_(0)l)/(ln(b)/(a))](https://img.qammunity.org/2021/formulas/physics/college/qz38ybggb1ugyuyikqdo3e5on8njlxqxbz.png)
Put the value into the formula
![C=(2\pi*8.85*10^(-12)*25.0*10^(-2))/(ln(5.20)/(0.600))](https://img.qammunity.org/2021/formulas/physics/college/zvjzs7tclp5pv8qq9iqfeij19g91kgz8an.png)
![C=6.43*10^(-12)\ F](https://img.qammunity.org/2021/formulas/physics/college/gh6ccqok2e0hcbqipsnh7cw1mh1kyzliba.png)
The capacitance is
![6.43*10^(-12)\ F](https://img.qammunity.org/2021/formulas/physics/college/2s77oiv2cp19xauyb9xfq6ofv57p7b3sii.png)
(b). We need to calculate the potential difference is necessary to produce these charges on the cylinders
Using formula of charge
![q=CV](https://img.qammunity.org/2021/formulas/physics/college/n2go2thwtxct4ewlzq8ojrhkp385aguw7e.png)
![V=(q)/(C)](https://img.qammunity.org/2021/formulas/physics/college/vk0rw76nmycrp63x9y65a0vb7mb4qt00lx.png)
Put the value into the formula
![V=(15.5*10^(-12))/(6.43*10^(-12))](https://img.qammunity.org/2021/formulas/physics/college/q8v88lu1n6v419du49hmmwtnuayvgrlpee.png)
![V=2.41\ V](https://img.qammunity.org/2021/formulas/physics/college/65gmhrhz3f8hy3rhe6uqe2wjtis523w277.png)
Hence, (a). The capacitance is
![6.43*10^(-12)\ F](https://img.qammunity.org/2021/formulas/physics/college/2s77oiv2cp19xauyb9xfq6ofv57p7b3sii.png)
(b). The potential difference is necessary to produce these charges on the cylinders are 2.41 V.