5.8k views
21 votes
Find the derivative of tan(x).

User Daviddd
by
8.0k points

2 Answers

9 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

Derivative of tan(x) is sec²x


\qquad \sf  \dashrightarrow \: \therefore (d)/(dx) ( \tan(x)) = { \sec}^(2) (x)

You can check the first principle method of derivation in attachment

Find the derivative of tan(x).-example-1
User Returneax
by
8.4k points
9 votes


\rightarrow \sf (d)/(dx) (tan(x))


\rightarrow \sf (d)/(dx) ( \ (sin(x))/(cos(x)) \ )

use the quotient rule


\rightarrow \sf (cos(x) * (d)/(dx) (sin(x)-sin(x)*(d)/(dx)(cos(x) )/(cos(x)^2)


\rightarrow \sf (cos(x) * cos(x)-sin(x)*(-sin(x) ))/(cos(x)^2)


\rightarrow \sf (cos(x)^2+sin(x)^2)/(cos(x)^2)


\rightarrow \sf (1)/(cos(x)^2)


\rightarrow \sf sec(x)^2

used formula's :

  • cos²(x) + sin²(x) = 1

  • \sf (1)/(cos^2(x) )= sec^2(x)
  • 
    \sf (d)/(dx) cos(x) = -sin(x)

  • \sf (d)/(dx) sin(x) = cos(x)
  • tan(x) = sin(x)/cos(x)
User Daniel Brady
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories